The System Cadmium Oxide-Stannic Oxide

By A. J. SMITH

Department of Chemistry, The University, Sheffield, 10, England

(Received 14 December 1959)

In the course of a study of the system $CdO-SnO_2$ two compounds were formed by solid-state reactions. $CdSnO_3$ is orthorhombic with a distorted perovskite structure, having

$$a = 5.547$$
, $b = 7.867$, $c = 5.577$ Å.

Cd₂SnO₄, not previously reported, is orthorhombic with

$$a = 10.01$$
, $b = 5.55$, $c = 3.07$ Å.

The X-ray powder diffraction patterns of these compounds are given. Other phases of undetermined structure were obtained by heating cadmium α -stannate precipitates, but not by dry reaction.

Introduction

Compounds in the CdO-SnO₂ system may be prepared by two methods—by heating an intimate mixture containing appropriate proportions of suitable cadmium and tin compounds, or by precipitation from an alkali α -stannate solution of a cadmium compound, which is subsequently ignited. The former method was used by Náray-Szabó (1943), who reported the formation of a compound CdSnO₃ which, he stated, showed

Table 1. Diffraction data for CdSnO₃

Cu $K\alpha$ radiation (Film 32) I $\sin^2 \theta_o$ $\sin^2 \theta_c$ hkl $\sin^2 \theta_0$ $\sin^2 \theta_c$ hkl46 0.02150.0200 100 0.39120.3903 323 5 3 0.04830.0487111 5 0.39700.3978252 4 0.05270.4055412 0.0777 121 10 0.077316 0.40610.4063430 0.0798 0.0799200 0.4064243 3 0.0861 2 0.42570.0854012 0.4254431 0.1061 2 112 0.43370.4335153 2 0.1064 0.1061 2 031 0.43940.4403351 0.1069 130 1 0.44810.4467261 1 0.11493 0.1151022 0.46030.4613044 2 0.12565 0.1260131 0.47450.4739440 0.15425 0.1546040 0.4990500 2b0.5005 0.15720.1563202 0.5010 413 1 0.16340.1634032 0.5087510 0.5100 2 0.16680.1668230 0.5124171 0.1920103 0.5397163 5 0.19256b0.53930.19360.5402141 244 $054 \alpha_1$ 4 0.20300.20164 0.5458113 0.54640.2092 0.2084 2 0.5497 $054 \alpha_2$ 1 311 0.5491270 α₁ 1 0.21150.2106023 0.55300.55230.2306 123 0.5550 $270 \alpha_2$ 8 0.23172 0.5555 $521 \alpha_1$ 0.23100420.55595 3 450 α₁ 4 0.23480.2344240 0.5599 0.5600 0.23890.23743210.56270.5627 $450 \alpha_2$ 0.26740.2666 330 2 2 0.5883 $\frac{2}{2}$ 0.6172 $080 \alpha_1$ 0.28050.2806151 0.6178 $080 \alpha_2$ 1 0.29000.2905223 0.62080.62020.29933 $272 \alpha_1$ 0.62940.6286 $\frac{7}{2}$ 2 $272 \alpha_2$ 0.30610.3058004 0.63300.6317344 α_1 7 0.31030.3108 242 2 0.6386 0.6389344 α_2 1 0.31760.31790521 0.64190.64210.3194400 0.6562 181 α_1 2 0.31972 0.6553 $305 \alpha_1$ 0.32132500.6563424 α_1 1 0.3406 0.3405251 3 0.6626 0.6627 424 α_2 1 0.34680.3465143 0.66600.36260.3613 313 3 0.6666 0.6660 460 α_1 1 315 α_1 6 0.38590.3856204 0.6660

				Table 1 (cont.)		•		
I	$\sin^2 \theta_o$	$\sin^2 heta_c$	hkl		I	$\sin^2 \theta_o$	$\sin^2 heta_c$	hkl
		0.6693	460 α_2	:	2	0.8180	0.8171	$514 \alpha_2$
2	0.6710	0.6693	$\begin{array}{ccc} 315 & \alpha_2 \\ 371 & \alpha_1 \end{array}$		1	0.8248	$\left\{\begin{array}{c}0.8241\\0.8242\end{array}\right.$	$\begin{array}{cc} 065 & \alpha_1^2 \\ 543 & \alpha_1 \end{array}$
		0.6716	$541 \alpha_1$		2	0.8295	0.8318	$364 \alpha_1$
1	0.6751	∫ 0.6743	$371 \alpha_2$		1	0.8342	0.8360	$364 \alpha_2$
4	0.6946	0.6749 0.6948	$541 \alpha_2$	İ	4	0.8456	0.8453	$560 \alpha_1$
2	0.6963	0.6969	$325 \alpha_1$		2	0.8500	0.8496	$560 \alpha_2$
6	0.6996	$ \begin{cases} 0.6982 \\ 0.6983 \end{cases} $	$280 \ \alpha_{1} \ 363 \ \alpha_{1} \ 295 \ \alpha_{2} \ \alpha_{3} \ \alpha_{3} \ \alpha_{3} \ \alpha_{4} \ \alpha_{5} \ \alpha_$		3	0.8575	$ \begin{cases} 0.8575 \\ 0.8575 \end{cases} $	$\begin{array}{cc} 092 & \alpha_1 \\ 274 & \alpha_1 \end{array}$
		0.7004	$325 \alpha_2$ $280 \alpha_2$		2	0.8610	$\left\{ egin{array}{l} 0.8603 \ 0.8603 \end{array} ight.$	$092 \alpha_2$ $274 \alpha_2$
3	0.7027	0.7017	$363 \alpha_2$		6	0.8661	0.8662	$306 \alpha_1^2$
4	0.7134	0.7134	$182 \alpha_1$		3	0.8700	0.8705	$306 \alpha_2$
2	0.7170	0.7170	$182 \alpha_2$	i	4	0.8751	0.8758	$316 \alpha_1$
I	0.7229	0.7240	$273 \alpha_1$	i	2	0.8791	0.8802	$316 \alpha_2$
,	0.5000	0.7254	$026 \alpha_1$		1	0.8825	0.8826	$435 \alpha_1$
l	0.7262	0.7257	$354 \alpha_1$		2	0.8995	0.8987	$613 \alpha_1$
		0.7276	$273 \alpha_2$		1	0.9034	0.9032	$613 \alpha_2$
1	0.7306	$\begin{cases} 0.7293 \\ 0.7217 \end{cases}$	$354 \alpha_2$		2	0.9125	0.9110	$553 \alpha_1$
ı	0.7353	0.7317	$453 \alpha_1$		1	0.9147	0.9155	$553 \alpha_2$
l		0.7353	$453 \alpha_2$		5	0.9347	0.9349	$007 \alpha_1$
1	0.7419	0.7424	$426 \alpha_1$		3	0.9391	0.9394	$007 \alpha_2$
5	0.7730	$ \begin{cases} 0.7732 \\ 0.7736 \\ 0.7736 \end{cases} $	$\begin{array}{ccc} 282 & \alpha_1 \\ 036 & \alpha_1 \end{array}$		6	0.9498	$\left\{\begin{array}{c}0.9495\\0.9501\end{array}\right.$	$075 \alpha_1 \\ 445 \alpha_1$
3	0.7771	$\left\{\begin{array}{c} 0.7771\\ 0.7775\end{array}\right.$	$\begin{array}{ccc} 282 & \alpha_2 \\ 036 & \alpha_2 \end{array}$		3	0.9542	$\begin{cases} 0.9542 \\ 0.9548 \end{cases}$	$075 \alpha_2$ $445 \alpha_2$
5	0.7813	0.7812	$090 \alpha_1$		3	0.9581	∫ 0.9577	$544 \alpha_1$
3	0.7850	0.7851	$090 \alpha_2$		9	0.9991	0.9584	$650 \alpha_1$
3	0.7979	$\left\{\begin{array}{l}0.7978\\0.7978\end{array}\right.$	$\begin{array}{cc} 174 & \alpha_1 \\ 255 & \alpha_1 \end{array}$		2	0.9628	$ \begin{array}{c} 0.9625 \\ 0.9632 \end{array} $	$\begin{array}{cc} 544 & \alpha_2 \\ 650 & \alpha_2 \end{array}$
2	0.8017	∫ 0.8015	$174 \alpha_2$	}	1	0.9686	0.9683	$383 \alpha_1$
		0.8015	$255 \alpha_2$	1	l	0.9712	0.9713	$464 \alpha_1$
3	0.8091	0.8089	$183 \alpha_1$		3	0.9778	0.9776	651 α_1
3	0.8134	∫ 0.8129	$183 \alpha_2$		2	0.9829	0.9824	$651 \alpha_{9}$
		∫ 0.8131	$514 \alpha_1$	I	1	0.9866	0.9861	$710 \alpha_1$

b indicates a broad reflection.

The reflections at $\sin^2\theta = 0.0527$ and 0.2993 are probably caused by uncombined stannic oxide, and so would indicate a very small loss of cadmium oxide from this originally stoichiometric preparation.

a monoclinic distorted perovskite structure and a lattice constant of 7.80 Å. According to Megaw (1946) such monoclinic structures are better described as orthorhombic. Coffeen (1953) reported a product with the formula CdSnO₃, prepared by the second method, and gave a table of unindexed interplanar spacings for it. These cannot be indexed on the basis of Náray-Szabó's unit cell. There does not appear to be in the literature any previous report of other compounds in this system.

Experimental and results

Solid-state reactions

Mixtures comprising various proportions of cadmium carbonate and stannic oxide were thoroughly ground and heated in air in alumina boats, by means of a platinum-wound resistance furnace. The powdered products were examined by X-ray diffraction using 9 cm. and 19 cm. diameter Unicam, Debye-Scherrer type cameras with filtered copper radiation. Wavelengths used were $K\alpha_1$ 1.54051, $K\alpha_2$ 1.54433 Å. Intensities of reflections were estimated visually on a scale of 10.

The products of firing at low temperatures were mixtures of cadmium and stannic oxides. After a long period (~40 hr.) at 800 °C. or a shorter period at 1000 °C. reaction occurred, and diffraction patterns showing the presence of mixed oxide phases were obtained. At these temperatures a small loss in weight, due to the volatilisation of cadmium oxide, was observed, and at higher temperatures this effect substantially altered the composition of the products. A specimen heated for one hour at 1240 °C. lost all its cadmium oxide, and the product consisted solely of the original stannic oxide, as was shown by the change in weight and by its X-ray diffraction pattern. Volatilisation of stannic oxide becomes appreciable at temperatures of about 1500 to 1600 °C. Most of the materials studied were prepared at various temperatures between 1000 and 1100 °C.

The powder diffraction patterns obtained showed the presence in the products of two mixed oxide phases in addition to the component single oxides. A pale yellow compound containing CdO and SnO₂ in the mole ratio 1:1, showed a distorted perovskite structure with orthorhombic symmetry. As the diffraction pattern closely resembled that of the cor-

A. J. SMITH

Table 2. Diffraction data for Cd₂SnO₄

Cu	κ_{\sim}	radiation	(Film	86)	
cu	\mathbf{n}	ramamon	/ T. TITT	00)	

			Cu Aa ra	manon (run	ц 30)			
I	$\sin^2 \theta_o$	$\sin^2 heta_c$	hkl		I	$\sin^2 heta_o$	$\sin^2 heta_c$	hkl
1	0.0200	0.0193	010		3	0.6609	∫ 0.6598	741 α_1
î	0.0418	0.0429	210		3	0.0009	0.6603	$403 \alpha_1$
8	0.0723	0.0724	310	Ì	1	0.6646	∫ 0.6631	741 α_2
		0.0772	020		-	0 0040	0.6636	403 α_2
2	0.0756	(0.0777	$CdSnO_3$ line		4	0.6941	∫ 0.6936	$060 \alpha_1$
		0.0802	CdO line		•	0 00 11	0.6937	$650 \alpha_1$
10	0.0819	$\{0.0823$	011		2	0.6968	$\begin{cases} 0.6972 \\ 0.0072 \end{cases}$	$060 \alpha_2$
		(0.0831	120				0.6973	$650 \alpha_2$
2	0.1147	0.1137	410		1	0.7008	$0.6995 \\ 0.7030$	$\begin{array}{cc} 160 & \alpha_1 \\ 160 & \alpha_2 \end{array}$
2	0.1303	0.1303	320		1	0.7045	0.7030	$11,0,0$ α_1
4	0.1396	0.1402	021		$rac{2}{1}$	$0.7123 \\ 0.7163$	0.7163	$11,0,0$ α_1 $11,0,0$ α_2
2	0.1538	0.1546	$CdSnO_3$ line		$\overset{1}{2}$	0.7194	0.7172	$260 \alpha_1$
7	0.1575	0.1574	401 030		ĺ	0.7237	0.7208	$260 \alpha_2$
1	0.1733	0.1737	411		î	0.7347	0.7333	$052 \alpha_1$
1	0.1774	$0.1767 \\ 0.1933$	321		î	0.7381	0.7369	$052 \alpha_2$
$\frac{2}{3}$	$0.1952 \\ 0.2171$	0.1933 0.2161	CdO line		5	0.7422	0.7395	$033 \alpha_1^2$
3 1	$0.2171 \\ 0.2251$	0.2101 0.2247	520		3	0.7463	0.7431	$033 \alpha_2$
8	0.2278	0.2268	330		4	0.7520	0.7482	841 α_1
4	0.2307	0.2298	511		2	0.7562	0.7519	841 α_2
3	0.2317	0.2317	610	1	2	0.7931	0.7925	$333 \alpha_1$
2	0.2348	0.2346	421		1	0.7970	0.7964	$333 \alpha_2$
$\overline{2}$	0.2525	0.2520	002		1	0.8075	0.8058	$922 \alpha_1$
2	0.2683	0.2681	430		6	0.8107	0.8096	$361 \alpha_1$
	0.2764	∫ 0·2754	601		3	0.8147	0.8136	$361 \alpha_2$
1	0.2704	0.2756	202		6	0.8359	0.8337	$433 \alpha_1$
1	0.2857	0.2877	521		3	0.8398	0.8378	$433 \alpha_2$
3	0.2945	∫ 0.2947	611		1	0.8434	0.8409	$560 \alpha_1$
		0.2949	212		1	0.8474	$0.8451 \\ 0.8599$	$560 \alpha_2$
6	0.3049	0.3051	302	ļ	1 1	0.8616	0.8599 0.8641	$10,1,2 \alpha_1 \\ 10,1,2 \alpha_2$
2b	0.3281	0.3292	022			0.8655	(0.8973	$\begin{array}{ccc} 10,1,2 & \alpha_2 \\ 10,4,0 & \alpha_1 \end{array}$
1b	0.3486	0.3464	402		6	0.8964	0.8979	$243 \alpha_1$
2	0.3701	$0.3714 \\ 0.3718$	711 041				0.9018	$10,4,0 \ \alpha_2$
$\frac{2}{2}$	$0.3728 \\ 0.3810$	$0.3718 \\ 0.3823$	322	1	3	0.9010	0.9024	$243 \alpha_2$
$\overset{2}{2}$	0.3866	0.3861	630		6	0.9114	0.9111	$12,0,1 \alpha_1$
		(0.4293	721		o.		∫ 0.9156	$12,0,1 \alpha_{2}$
3	0.4301	0.4316	132		6	0.9159	0.9177	$10,2,2 \alpha_1$
2	0.4455	(Ì	3	0.9204	0.9222	$10,2,2 \alpha_2$
		0.4491	631		6	0.9273	0.9274	343 α_1
3	0.4488	0.4493	$\boldsymbol{232}$		6	0.9310	∫ 0.9318	$723 \alpha_1$
3	0.4592	0.4599	811				0.9320	$343 \alpha_2$
1	0.5013			1	3	0.9351	0.9364	$723 \alpha_2$
1	0.5095		~10.11	{	I	0.9435	0.9430 0.9452	$\begin{array}{cc} 803 & \alpha_1 \\ 062 & \alpha_1 \end{array}$
1	0.5152	0.5159	CdO line		3	0.9451	0.9452	$652 \alpha_1$
2	0.5217	0.5212	640				(0.9499	
4	0.5262	0.5258	731		6	0.9500	0.9500	$\begin{array}{cc} 062 & \alpha_2 \\ 652 & \alpha_2 \end{array}$
4	0.5466	0.5455	051		U	0.9900	0.9500	$170 \alpha_1$
0	0.5606	$\begin{cases} 0.5602 \\ 0.5604 \end{cases}$	$\begin{array}{c} 911 \\ 712 \end{array}$		3	0.9544	0.9547	$170 \alpha_2$
2	0.9000	0.5608	042		4	0.9640	0.9623	813 α_1^2
1	0.5751	0.5732	532		8	0.9650	0.9643	11,0,2 α_1^{1}
1	0.9791	(0.5900	10,0,0				0.9688	$262 \alpha_1$
1	0.5915	0.5906	203		4	0.9700	{ 0.9691	$11,0,2 \alpha_2$
	0.0010	0.5922	113		1	0.9755	0.9736	$262 \alpha_2$
2	0.6048				5	0.9818	0.9823	$760 \alpha_1$
$\frac{2}{2}$	0.6244				3	0.9864	0.9871	$760 \alpha_2$
$\frac{2}{2}$	0.6338				7	0.9883	0.9882	$12,2,1 \alpha_1$
		∫ 0.6381	632		4	0.9932	0.9931	$12,2,1$ α_2
1	0.6386	(0.6394	313	I				

responding calcium compound, CaSnO₃, it was assumed that the extent of doubling of the pseudo-cell was the same as for that substance (Smith & Welch, 1960). The lattice constants for CdSnO₃, corrected for X-ray absorption in the specimen by extrapolation to $\theta = 90^{\circ}$ (Nelson & Riley, 1945), were found to be

$$a = 5.547$$
, $b = 7.867$, $c = 5.577$ Å all ± 0.005 Å.

These are mean values from several films, the data of one of which are reproduced in Table 1. The values obtained from different specimens, including those showing the presence of other phases, agreed within the experimental error, so that there appears to be no appreciable range of composition for this compound. Products approximating closely to the composition CdSnO₃ showed the presence of no other phases, provided that they had been sufficiently fired. It seems that the other mixed oxide, Cd₂SnO₄, is first formed, as insufficient firing (at temperatures less than 1100 °C.) of 1:1 CdO-SnO₂ mixtures led to a mixture of Cd₂SnO₄ with excess stannic oxide and a little of the perovskite phase. Refiring of such mixtures caused further reaction and led to the production of pure, or nearly pure, CdSnO₃.

The diffraction pattern of the bright yellow product corresponding with the formula Cd₂SnO₄ always showed weak lines due to the presence of cadmium oxide or the perovskite phase or both, but these were at a minimum when the mole ratio of CdO to SnO₂ in the product was 2:1. The colour of the products reached a maximum intensity at about this composition. The diffraction pattern of Cd₂SnO₄ was indexed on the basis of an orthorhombic unit cell with

$$a = 10.01, b = 5.55, c = 3.07 \text{ Å}$$

these figures having been obtained from the single crystal measurements referred to below. As the structure is not pseudo-cubic, these values were not corrected for X-ray absorption. The data from a typical film are shown in Table 2.

Products prepared by solid-state reactions ranged in composition from 10 to 90 moles of cadmium oxide per cent. One unexplained diffraction line of medium intensity appeared in a few patterns from tin-rich products prepared at temperatures of 1050 °C. or less, but no other evidence for other mixed oxide phases than the two described above was obtained.

Solution reactions

A number of samples were prepared by treating a solution of potassium α -stannate with cadmium ions,

and subsequently heating the white precipitates obtained, to remove the water content. At low temperatures of ignition (600 to 800 °C.) the yellow anhydrous materials gave complex diffraction patterns, which showed differences according to the proportions of cadmium and stannate ions used for the precipitation, and have not yet been satisfactorily interpreted. Neither of the mixed oxides described above seemed to be present, but some of the lines observed also occur in Coffeen's (1953) data. One of these materials on heating at 1000 °C. gave a product showing the perovskite structure of CdSnO₃.

Single crystals

Various molten salts were used as solvents in attempts to grow crystals of cadmium tin oxides suitable for X-ray studies. The only success was achieved when a melt of cadmium chloride, to which cadmium and stannic oxides had been added, was evaporated for seven hours at 800 °C. in a current of air. Microscopic examination of the part of the product which was insoluble in water revealed several phases, one of which occurred in yellow, oblong, weakly birefringent crystals large enough for X-ray work. One of these was selected, and rotation and oscillation patterns taken showed it to be orthorhombic with

$$a = 10.01 \pm 0.02$$
, $b = 5.55 \pm 0.01$, $c = 3.07 \pm 0.01$ Å.

It was considered that the yellow crystals were of Cd₂SnO₄ as their diffraction pattern and colour are both concordant with this conclusion.

References

COFFEEN, W. W. (1953). J. Amer. Ceram. Soc. 36, 207. MEGAW, H. D. (1946). Proc. Phys. Soc., Lond. 58, 133. Náray-Szabó, I. (1943). Naturwiss. 31, 202.

NELSON, J. B. & RILEY, D. P. (1945). Proc. Phys. Soc., Lond. 57, 160.

SMITH, A. J. & WELCH, A. J. E. (1960). Acta Cryst. 13, 653.